ఇది ఒక ఆపాదించదగిన Time-Speed problem. ఇది గమనికతో, సులభంగా సమీకరణాల ద్వారా పరిష్కరించవచ్చు.
ఇవ్వబడినవి:
- Race length = 300 meters
- Initial speed ratio: P : Q = 1 : 2
- Let P speed =
x
, then Q speed =2x
- Let P speed =
- After t seconds, P increases speed.
- If P quadruples speed ⇒ P and Q reach together
- If P triples speed ⇒ P loses by 5 seconds
Step 1: Distance covered in first t seconds
Let’s calculate distance covered by both in first t
seconds:
- P covers =
x × t
meters - Q covers =
2x × t
meters
Hence, distance remaining after t
seconds:
- P →
300 - xt
- Q →
300 - 2xt
Step 2: Case 1 – P quadruples speed ⇒ reach same time
After t seconds, P’s speed = 4x
Let remaining time taken by both = T
seconds (after t)
Then:
- Time for P to cover
300 - xt
at4x
speed =(300 - xt)/(4x)
- Time for Q to cover
300 - 2xt
at2x
speed =(300 - 2xt)/(2x)
Since they reach at same time:
\frac{300 - xt}{4x} = \frac{300 - 2xt}{2x}
Multiply both sides by 4x:
300 - xt = 2(300 - 2xt)
300 - xt = 600 - 4xt
Bring variables together:
-xt + 4xt = 600 - 300
\Rightarrow 3xt = 300
\Rightarrow xt = 100 \quad \text{(Equation 1)}
Step 3: Case 2 – P triples speed ⇒ loses by 5 sec
Now P’s speed after t seconds = 3x
Then time taken after t seconds:
- P:
(300 - xt)/(3x)
- Q:
(300 - 2xt)/(2x)
Given: P loses by 5 seconds ⇒ Q is faster ⇒
\frac{300 - 2xt}{2x} - \frac{300 - xt}{3x} = 5
Take LCM (6x):
\frac{3(300 - 2xt) - 2(300 - xt)}{6x} = 5
Expand numerator:
\frac{900 - 6xt - 600 + 2xt}{6x} = 5
\Rightarrow \frac{300 - 4xt}{6x} = 5
Cross-multiply:
300 - 4xt = 30x
\Rightarrow 300 - 30x = 4xt \quad \text{(Equation 2)}
Step 4: From Equation 1 → xt = 100
⇒ x = 100/t
Substitute in Equation 2:
300 - 30(100/t) = 4 × 100
\Rightarrow 300 - 3000/t = 400
\Rightarrow -3000/t = 100
\Rightarrow t = -3000 / 100 = -30 \quad \text{(discard negative)}
Take correct signs again:
From
\[
300 - 30x = 400
\Rightarrow -30x = 100
\Rightarrow x = -10/3 \quad \text{(again negative)}
So something is wrong. Let's try again with correct sign:
**Actually:**
From before:
\[
300 - 4xt = 30x
\Rightarrow 300 - 30x = 4xt \tag{✓}
From Eq (1): xt = 100
⇒ So t = 100/x
Substitute in above:
300 - 30x = 4x × (100/x)
\Rightarrow 300 - 30x = 400
\Rightarrow -30x = 100
\Rightarrow x = -10/3 \quad (\text{not possible})
Wait. That means we must have made a sign mistake.
Try again from this step:
\[
\frac{300 - xt}{3x} - \frac{300 - 2xt}{2x} = 5
\Rightarrow \frac{2(300 - xt) - 3(300 - 2xt)}{6x} = 5
Now expand:
\frac{600 - 2xt - 900 + 6xt}{6x} = 5
\Rightarrow \frac{-300 + 4xt}{6x} = 5
\Rightarrow -300 + 4xt = 30x
\Rightarrow 4xt = 30x + 300
\Rightarrow t = (30x + 300) / 4x \tag{Eq 3}
But from Equation 1: xt = 100
⇒ So t = 100/x
Equate:
100/x = (30x + 300)/(4x)
\Rightarrow 100 = (30x + 300)/4
\Rightarrow 400 = 30x + 300
\Rightarrow 30x = 100
\Rightarrow x = \frac{10}{3}
\Rightarrow t = \frac{100}{x} = \frac{100}{10/3} = \boxed{30 \text{ seconds}}
✅ Final Answer:
\boxed{t = 30 \text{ seconds}}
వివరణ తెలుగులో కావాలంటే చెప్పండి మధు!
No comments:
Post a Comment